

IEEE Std 45.1 Update

IEEE ESTS 2023

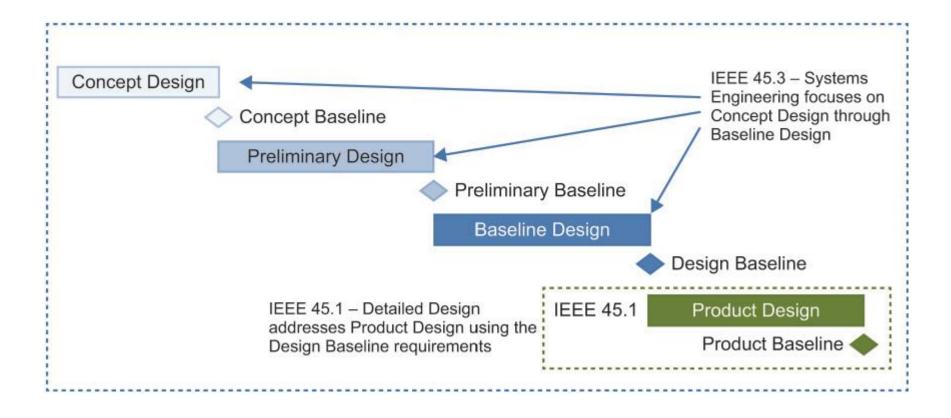
Alexandria VA, August 1, 2023

Norbert Doerry and John Amy

Agenda

- Introduction to IEEE 45 series of standards
- IEEE 45.1 update project description and current status
- Major Changes
- Minor Changes
- Future Plans

IEEE 45 Series of Standards:

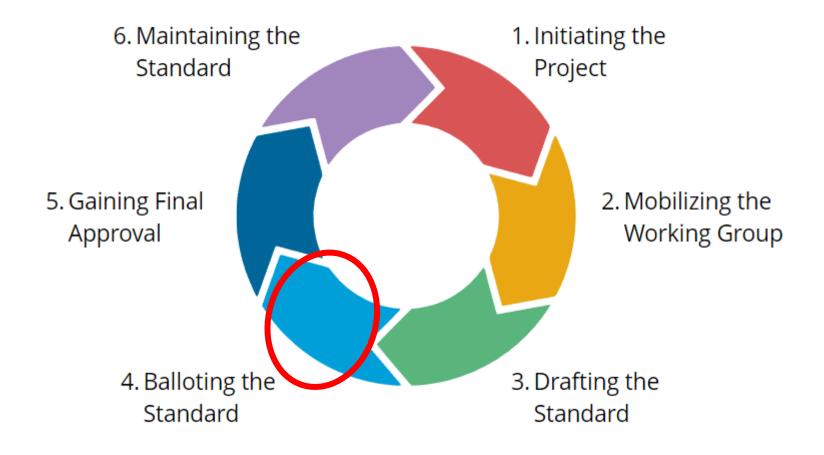

Recommended Practice for Electrical Installations on Shipboard

- IEEE Std. 45.1-2017: Design (In Revision)
- IEEE Std. 45.2-2011: Controls and Automation (In Revision)
- IEEE Std. 45.3-2015: Systems Engineering
- IEEE Std. 45.4-2018: Marine Sectors and Mission Systems
- IEEE Std. 45.5-2014: Safety Considerations
- IEEE Std. 45.6-2016: Electrical Testing
- IEEE Std. 45.7-2012: AC Switchboards
- IEEE Std. 45.8-2016: Cable Systems

IEEE 45.1 Design

- IEEE Std 45.1 provides recommended practice for design recommendations for
 - ac power systems,
 - dc power systems,
 - emergency power systems,
 - shore power,
 - power quality and harmonics,
 - electric propulsion and maneuvering systems,
 - motors and drives,
 - thrusters,
 - steering systems installed shipboard
- IEEE Std 45. 1 is intended for use with the other IEEE Std 45 series of documents.
- IEEE Std 45.1 provides an effective set of integration requirements and identifies key issues and recommended solutions or options.

IEEE Std. 45.1 focus



Need for update project (from the PAR)

- Although IEEE Std 45.1-2017 is only four years old, there has been tremendous advances in shipboard electrical power system technology.
- This revision intends to update recommended practices in areas such as
 - system studies,
 - Electric Power Load Analysis,
 - · grounding methods,
 - common mode current control,
 - differential mode non-fundamental frequency current control,
 - variable speed drives, low voltage d.c. interface standards,
 - · voltage drop calculations,
 - variable speed generator guidance,
 - Transformer guidance,
 - fault protection for power electronic based systems,
 - energy storage,
 - shore power,
 - creepage and clearance,
 - electric propulsion,
 - power hardware in the loop (PHIL) and control hardware in the loop (CHIL)
 - simulation,
 - insulated bus pipe / bus duct.

PAR = Project Authorization Request

IEEE Standards Development Process

P45.1 Working Group Officers

- P45.1 Working Group Chair:
 - Norbert Doerry (doerry@ieee.org)
- P45.1 Working Group Vice-Chair:
 - Bob Koebke (rkoebke@columbiagroup.com)
- P45.1 Working Group Secretary
 - John Prousalidis (jprousal@naval.ntua.gr)

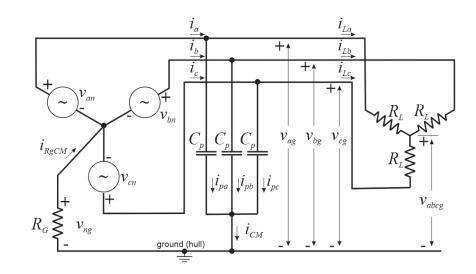
IEEE 45 Working Group Chair: Dwight Alexander (DWIGHT.ALEXANDER@ngc.com)

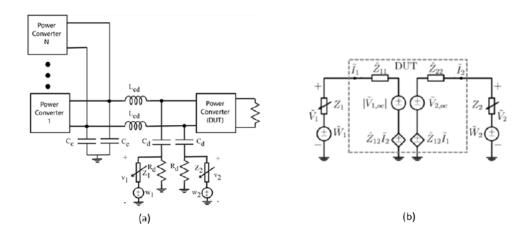
IEEE Industry Applications Society/Petroleum & Chemical Industry(IAS/PCI)

27 January 2023

Schedule

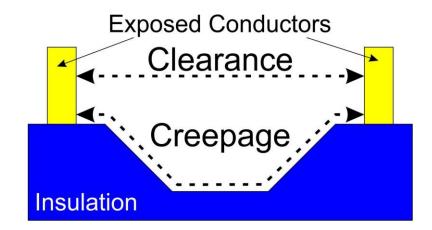
- Spring 2021: Identify need for update and develop PAR (Project Authorization Request)
- June 2021 Sept 2021: PAR approval process
- Oct 2021 Nov 2021: Develop list of candidate contributions
- Oct 2021 Jan 2023: Develop draft sections (contributions)
- Jan 2023 Feb 2023: Integrated Review
- Feb 2023 April 2023: Mandatory Coordination Form Balloting Group
 - Balloting Group Invitation (Feb 14 Mar 15)
 - Concurrent Mandatory Coordination
- May 2023 Sept 2023: Ballot
 - Formed Comment Resolution Group
 - 45 days initial Ballot (April 30 June 14)
 - Comment resolution and recirculation
- Sept 2023 Nov 2023: Publish


First Working Group Meeting: October 15, 2021 (1000 EDT) via Webex Following Meetings: approximately every 2 weeks via Webex


Major Changes

- Common Mode annexes
- Creepage and Clearance / Insulation System Guidance
- Voltage interface standards
- System Grounding
- Variable Frequency Drive (VFD) guidance
- Transformers
- Energy Storage
- Electric Propulsion
- Deletion of sections covered in other 45.x standards

Common Mode Annexes


- Annex C: Common Mode Fundamentals (informative)
 - Provides basic concepts as applied to shipboard power systems
 - Provides list of references for additional information
- Annex D: Utilizing Thévenin Circuits for Common-Mode Evaluation of Power Electronic Systems (informative)
 - Provides overview of method for characterizing power system equipment to develop Thévenin circuit models
 - Provides overview of method to develop worst case Common Mode (and Differential Mode) behavior estimates
 - Provides list of references for additional information

Creepage and Clearance / Insulation System

- New section 7.7 Insulation system design
 - Section 7.7.1 Creepage and Clearance
 - Identifies specific standards that should be consulted.
 - Identifies lack of appropriate standards for the shipboard environment for dc systems
 - Section 7.7.2 Coordinated Insulation Design
 - Identifies techniques to determine if existing insulation in equipment is adequate for the shipboard environment.
- Updated many individual equipment sections.
 - Fixed errors
 - Use of consistent language

Voltage interface standards

- Updated nominal system voltages
 - Deprecated 380 volts ac and 2400 volts ac
- AC power characteristics updated to reflect commercial practice as an alternate to Mil-STD-1399-300 interfaces
- Clearly defines reference values to apply percentages.

Table 2 —Alternating	current (ac) power characteristics
Characteristics	Limits

Characteristics	Limits	
Frequency		
a) Frequency tolerance	± 5%	
b) Frequency transient:		
Frequency transient tolerance	± 10%	
Frequency transient recovery time	5 s	
c) Frequency modulation		
Voltage		
a) Voltage tolerance:	+6% / -10%	
b) Voltage transient:		
1) Voltage transient tolerances	± 20%	
2) Voltage transient recovery time	1.5 s	
c) Line Voltage Unbalance (3 phase systems only)	3 %	
Combined		
a) Sum of Frequency tolerance (%) and Voltage tolerance	+6% / -10%	
$(^{9}\!_{0})$		

Characteristics	Limits
Voltage	
a) Steady state:	
Steady-state voltage tolerance (rms)	±1.5%
2) Steady-state voltage range (rms) (0 to rated power)	±4%
Steady-state voltage ripple (rms)	4%
Steady-state peak-to-peak voltage deviation	18%
b) Voltage transient:	
Voltage transient tolerance	± 20%
Voltage transient recovery time	1.5 s

System Grounding

- Additional Guidance
 - Grounding transformers
 - Grounding resistors
 - DC Blocking networks
 - DC grounding
- Improved drawings

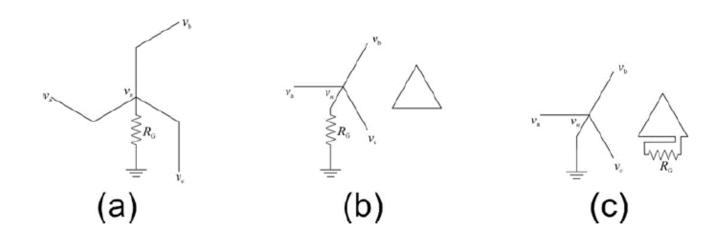
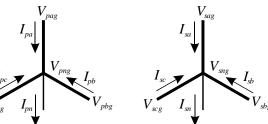
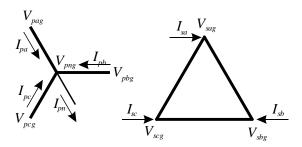


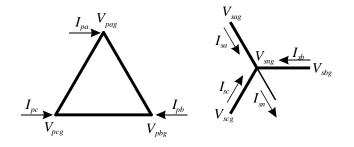
Figure 6—Grounding transformer configurations
(a) zig-zag transformer (b) wye-delta transformer (c) wye-broken-delta transformer

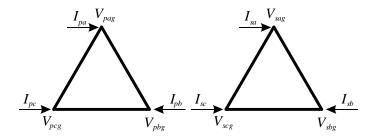
Variable Frequency Drives

- Standardized on using the term Variable Frequency Drive
- Refers to IEEE 45.2 for smaller VFDs
- Highlights importance of grounding
- Incorporates coordinated insulation design and creepage and clearance.
- Addresses regeneration


https://commons.wikimedia.org/wiki/File:Variable_frequency_drive.jpg


Transformers


• Provides recommendations for different winding combinations $v_{res}^{I_p}$



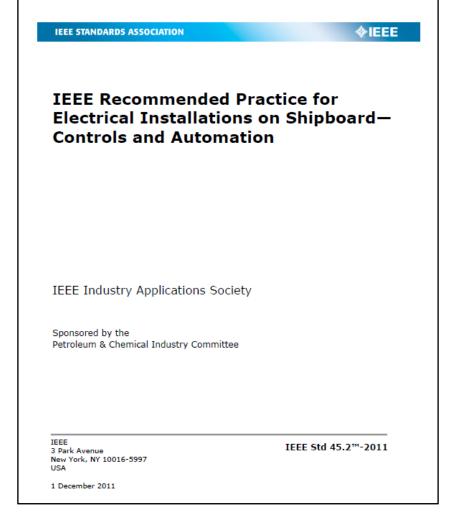
- Wye-delta
- Delta-wye
- Delta-delta
- Multi-winding

Energy Storage

- Energy storage had been focused on batteries (and mostly lead acid based)
- Added guidance for Flywheels
 - SAND2015-10759
 - DOE Energy Storage Handbook
- Added guidance for Supercapacitors
 - ABS Guide for Use of Supercapacitors in the Marine and Offshore Industries

https://upload.wikimedia.org/wikipedia/commons/2/22/Skeleton_Technologies_ultracapacitators.jpg

Electric Propulsion


- Changed focus from nonintegrated electric drive to integrated electric drive
- Focus on propulsion motors and associated equipment

U.S. Navy photo by Chris Hatch

Deletion of sections covered in other 45.x standards

- Section 12 Electrical Power System Control
 - Largely eliminated (duplicative of IEEE Std. 45.2)
 - Renamed Voice Communications Systems (old 12.5)
- Various sections referencing controls have been modified to refer to IEEE 45.2 instead of providing guidance.
- Various sections references cables have been modified to refer to IEEE 45.8
- Various sections referencing testing have been modified to refer to IEEE 45.6

Minor Changes

- Updated referenced standards
- Added Autonomous and Remote control functions clause
- Added Design life and Removal Routes clause
- Added Fuel Cells clause
- Added Embarked vehicle power clause
- Deleted Semi-automatic navigation light panel figure from Section 17.13
- Modified clause 22, System Studies, analysis, and reports to only include requirements on the content and conduct of the studies / analysis and not invoke requirements on the system.
- Added electrical components clause 24.5 (under materials)
- Added section 29.5 for Total Waveform Distortion Measurements
- Added section 29.6 Cathodic Protection Sacrificial Anodes
- Broadened applications of EPLA in Annex B
- Added a nameplate clause 9.3.2 for Shore Power

Future Plans

Quarterly Meetings

- Identify topics for next revision collect proposed "change packages"
- Identify open questions
- Track progress on open questions
- Determine when an amendment or revision project should be initiated

Example open questions

- How should Common Mode current and voltage limits be established?
- What are better sources of load factors for Electric Power Load Analysis?
- Is there a better method for estimating electric load?
- What guidance should be provided for fault protection design in power electronics based systems?
- What guidance should be provided for insulated bus pipe and bus duct?
- Should the guidance for emergency power be updated to reflect new technology?
- What should the creepage and clearance requirements be for dc systems?
- What additional guidance should be provided to assist in integration of energy storage?

Questions?

doerry@ieee.org